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ABSTRACT

*
Let X be a vector lattice Hilbert space with dual X . Let M be a con-

* *tinuous linear mapping of X onto X . Let p, q € X with p > 0. We consider

the relationship between the linear ~~~~1ementarity problem: Find x € X such

that x > 0, Itt + q > 0, (x, Itt + q) = 0, and the linear programming problem:

Find x e x which minimizes (x p) subject to x > 0, Mx + q > 0.

AI~~($DS) Subject Classifications: 49C99, 90C05, 90C20.

Xey Words: Linear complementarity problem; linear program; variational inequality;

lubrIcation cavitation; partially ordered Hilbert space.

Work Unit Number 5 - Mathematical Programming and Operations Research.

Computer Science Department , University of Wisconsin, Madison, Wisconsin.
(2~Sponsored by the National Science Foundation under Grant No. MCS77-26732 and

the University of Wisconsin, Madison, Graduate School Research Committee.
• ~

3
~Support facilities provided by the U .S. Army under Contract No. DAAG29-75-C-0024 .

~
4
~Bal1io1 College, University of Oxford.

_______- . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~-- -,, ~~~~~ .
—.-- -~ ~

- --- _—.—-.-———_.— -_ 



—

SIGNIFICANCE AND EXPLANATION

Many free boundary problems in the areas of fluid mechanics , porous flow,

elasticity, and plasticity can be formulated as linear complementarity problems in

which a differential equation (ordinary or partial) must be solved subject to the

inequality constraint that the solut ion be non-negative; roughly speaking , at any

point the solution must either be zero or satisfy the differential equation . We

study linear complementarity problems which can be reformulated as linear programs

in which a linear functional must be minimized subject to inequality constraints.

The reformulation of linear cosplementarity problems as linear programs offers

two advantages :

(i) It suggests alternative numerical methods of solving the problems.

(ii) For the problem of a cavitating journal bearing, which is used as an example ,

the linear program requires the minimization of a linear functional which is

proportional to the load borne by the bearing, so that the linear program

has a physical interpretation. It is possible that the linear programs for

other problems will also have physical interpretations, though this will

have to be determined in each case. 
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EQUIVALENCE OF LINEAR COMPLEMENTARITY PI~)BLEI~
AND LINEAR P1~)GRAMS IN VECTOR LATTICE HILBERT SPACES

C. W. cryer U 2 3 )  
and N. A. H. Dempster~

4
~

1. Introduction

The linear co~~ 1ementarity problem in real n—dimensional Euclidean space R~ is: Find

x e R~ such that x ~ 0, mc + q ~ 0, and xT (Mx - q) 0, where N is a given real

n x n - matrix and q is a given vector in R”. The linear programaing problem in R~ is:

Find x c R’ which minimizes ~~~ subject to x > 0 and mc + q > 0, where N is a

given rea l n x n matrix and p and q are given vectors in Rn .

Nangasarian (19761 showed that , unde r certain conditions, each solution of the linear

prograsining problem in Rn is a solution of the linear cosçlementarity problem in Rn .

Mangasarian (1977 , l977a1 has subsequently extended this work . Related work is due to

Cottle and Veinott (1972], Nor~ (19711 , Tastir (1973], Cottle, Golub , and Sacher (1974),

Cottle and Pang (1976 , l976a], Pang (1977).

Quite independently, and often not very explicitly, the relationship between certain

infinite-dimensional linear progranuning problems and linear complementarity problems has

been noted (?breau (19711, Durand (1968) , Lewy and Stampacchia (1969] , Stainpacchia (19651 ,

Lions and Stampacchia ( 1967]).

Here, we consider extensions of some of the results of Mangasarian to infinite—dimen--

sional spaces. Apart from their intrinsic value, our results provide useful ways of inter-

preting, analysing , and solving, linear progransning problems and linear coinplementarity

problems arising in physical situations.

The paper is organised as follows . In section 2 we dispose of some preliminaries. In

section 3 we introduce the linear program (LP) , the dual linear program (LD) , and the least

1
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.lem nt problem (I.!) . In section 4 we introduce the linear co~~ l.m.ntarity problem (LC) ,

the variational inequality (VI ) , and the unilateral minimization problem (or quadratic pro-

gra ing problem ) (UN) . In sect ion 5 we discusa the relationship between the linear program,

the least element problem, and the variational inequali ty . In section 6 we discuss in detail

a one-dimensional problem. Pinally , in section 7 , we apply our results to the probl em of

lubrication cavitation in j ournal bearings .
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2. Pr .liainaries -

X denotes a real Hu bert space with norm fi . and dual Y = X .  The evaluation of
*a continuous linear functional £ E X at a point x c X is denoted by ( x , & ) .

It is aastaed that X is partially ordered by a vector ordering ~~ . Let

P {x c  X : x >  0}

Then (Xellsy and Namioka (1976, p. 224]) P is a convex cone in X with vertex at the

origin : that i. P + P c P and AP c P for all non-n egative real A. We assume that P

is closed. x~~~y iff x - y > O ,  that is, x - y e P .

* *Th• dual cone P c X is defined by -

* * * *
P — {x c x : (x,x ~ 0 for all x c p} . (2.1)

* * a
We write x > 0 if x € P . Since p is closed it follows from the Hahn-Banach theore m

* * *that x ~ 0 if f (x,x ) ~ 0 for all x c P

It is also asstmsd that X is a vector lattice (Kelley and Namioka (1976, p. 229]).

That ii, for all x ,y € x, there exists a unique element sup(x,y) € X such that

sup(x,y) ~ * and sup(x,y) ~ y ; fur the rmo r•, if a € X satisfie s a a nd a ~ y then

a ~ sup(x,y). The assumption that X is a v•ctor lattice has the following consequences .

For all x,y c X there exists a unique element inf(x,y) such that x ~ inf(x,y) and

y > inf(x,y) , furthermore , if a € X satisfies a x and a ~ y then a ~ inf (x ,y ). If

x ~ y then sup (x,y) — z, and if y > * then sup(x ,y) — y; since sup(x ,y) is unique , it

follows that if x ~ y and y ~ x then x — y. For every x € X, x — sup (x,O) — inf (x,O)

so that X P — P .  If O x + y  where x , y€ P  then x — y — O ;  thus 0 is an extreme

point of P , that is, P is a pointed cone. 
—

* * * *N : X ~ Y — X denotes a continuous linear transformation with adj oint N : Y • X

defined by

* *  *(x, N y ) = (Na, y ) . (2 .2 )

Associated with N we have the continuous bilinear operator a : X x X • defined by

- a(v,u) — (U,  Mv) ; (2.3)

—3—
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a is sy stric if a(u,v) — a(v,u), and coercive if

a (x,x) ~~ ~Ilx II 2 , (2 .4 )

for some real strictly positive constant a and all * € X.

We will somet imes i~~ose the following conditions upon a and N:

*
Condition S. If r € X and u,v € X are such that

a(u,*) ~ (~j,r) and a (v,$) ~ (*,r) for all • € P.

and if w = inf (u,v), then

a(w,*) > (*,r) for all * € P. 0

Condition Z. If u ,v € P satisfy in f(u , v) = 0,

then a(u, v) ~ 0.
0

* *p and q denote elements of X . We assume throughout that p € P . We will some-

time assume that p is strictly positive, that is , if x € P and (x,p~ = 0 then x 0.

Since

a(u,*) — (*, r>  — (*, Mu — r) , (2.5 )

Condition S may be rewritten as follows: if Mu ~ r . Mv ~ r ,  and w = inf(u. v) ,  then

Na > r. If -N is the Laplacian operator V2 and r — 0 then Mu > 0 means, in an appro- •

priate sense, that —u is subharmonic. In this case, Condition S reduces to the well-known

fact that the infimum of two superharmonic functions is superharmonic. There is, therefore ,

a close connection between same of the present results and the theory of subharmonic func-

tions ( Redo (1972] , Brelot [1945 , 1965] , Staapac chia (1965] , Littman [1963], Noreau ( 1971]).

In the case when N is a square matrix , Condition Z is equivalent to the requirement

that the off-diagonal elements of N be non-positive - that is, that N is a Z-anatrix

(Fiedler and Ptak 11962]). There is, therefore, also a close connection between some of the

present results and the th.ory of N-matrices and Z-matrices (Plenusons (1976]). Condition Z

was i~~1icitly used by Stampacchia (1969, p. 151) with the conclusion a(u,v) < 0 replaced

by a (u,v) — 0.

Conditions S and S are not equivalent because, as shown in section 2.1, the necessary

and sufficient conditions for Conditions S and Z are not equivalent in the case of

matr ices. I*owsvsr, vs do have

—4-
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Theorem 2.1

Let a be coercive and satisfy Condition S. Then a satisfies Condition S.

Proof: Let u,v € X and r s X satisfy a(u,*) ,~ (*. r ) and a (v , *)  
,~~ ( *, r>  for all

• > 0. We wish to show that if w = inf(u,v) then a(w,$) ,~ (*~~) for all * > 0. To do

so, we modify an argument of Stampacchia (1965, p.2053.

Introduce the set U c X which consists of all C E X satisf ying C w. U — P + w

is closed and convex . From the fundamental theorem on variational inequalities (Stampacchia

(19643) we know that there exists fl e U such that

a(~ , a — i i )  ~ (a — n, r). (2.6)

for all a € U. In particular, choosing a = 
~~ 

+ 
~~~ 

we see that a(fl,$) ~ (*, r )

for all * > 0. The theorem will therefore be proved if we can show that r~ w.

Set r~ — inf(~~,u) ~ U. From (2.6) with a =

a(~~, C — n) > — y~, r )  . (2 .7)

On the other hand we know that 
~ 

- ‘ 0, u — > 0, and inf(~ - C, u - C) =

inf(~~,u) - ~ 0. Invoking Condition Z we see that

5 a (C, C — ~) = a (u ,  C — n) + a (C — U, C — n) .

= a(u ,  C — ii) + a(u — C, ~ — 
(2.8)

< a(u, C — n)
s. ( C — n , r )  .

Coobining (2.7)  and (2 .8) we find that

a (C — n , C — f l )  ~~O

Since a is coercive it follows that ~ = inf (u,~ ) — n, so that r~ u. Similarly n ~~ V.

Hence y~ ~ inf (u,v) — w. But n € U so that n w. We conclude that n = v.
0

In the case when N is a real square matrix, it is readily shown from Theorem 2.1.1

below that if a is coercive and satisfies Condition S then a satisfies Condition S. We

do not know whether this is true in general.

we now give three examples of spaces and operators fitting into the above framework .

-5= 
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2.1 Example 1

* * nLet X — Y — X — Y — R ; N — (a
~1

) an n x n real matrix, and ~ — (Pj). q — (q~),

n—vectors. Let P be the set of vectors in R~ with non-negative components, so that P

*is closed and P = P.

P has the additional important property that it has non—empty interior .

Clearly. p is strictly positive iff p~ ~ 0 for all i.

It is readily seen that Condition Z i~ satisfied if f m
u ~ 0 for i * j (that is,

— N is a S—matrix).

Theorem 2.1.1: Condition S is satisfied iff every row of N has at most one strictly posi—

tive coefficient, that is, NT is pre—Leontief (Cottle and Veinott (1972 , p. 2441)

Proof: We first observe that NT is pre-Leontief if f each row k of the inequality

Mu r can be written in the form

c
5u5 ~ 

rk + 
j~ l 

d
1
u
1 

(a)

where d
1 ~ 

0 for all j~ C ~ 0; and whore the dependence upon k of C
5 

and d
1 

has

been suppressed .

First let us asst~~ that MT is pre—Leontief and that Mu > r , Mv ~ r . Then inequality

(~ ) hold. for u, and a similar inequality holds for v. Since d
1 ~ 

0 we have that if

w — inf(u,v) then

c w  — inf (c u , c v )
5 5  s s  s s

n

~ r~ + 
~ 

d~ Lnf (u
1
,v
1
) ,

j .l

rk + ~ d
1

w
1j— l

so that Condition S is satisfied .

Mow Let us asrn that Condition S holds but that MT is not pr e—Leontief. Then there

is a row k of N with at least two positive coefficients, ~~~ and a,~~ say . Thus , the

k-tb row of the inequality Mu ~ r takes the form

-6-
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• mks”s > r~ — 

~~~~~ 
- 1L mkj uj

j *s,t

and a similar inequality holds for v. Set u ]
~
‘I5k~~ 

u~ — ~~~~~~~~~~~~~ v — 2u , V
t 

—

and U
1 

- V
1 

— 0 otherwise. Finally, set w — inf(u,v) and

r
1 

= ain I~~ mj~
u
~ Z

for all j .  Then Ni > r, and Mv > r. But,

~L tmkt = sI.~5
u5 + ‘1kt”~ 

+ 
j~ l 

m.~j
uj

rk l , 
j *s,t

so that the inequality Na r does not hold.

0

In conclusion , we note that if the problems in Examples 2 and 3 below are discretized ,

th. resulting finite difference or finite element matrices usually satisfy Conditions S and

S.

2. 2 Example 2

Let X — H~~(fl) , where (2 is a bounded domain (open connected set) in t, and

is the Sobolev space of once—differentiable functions vanishing on 30 (Adams (1975)).
• —l.Then F — X = H (0). Let N be the linear self-adjoint operator,

(Mu) Ct) — —
~~ ~~— (a Ct) ~~-(t)) , t € (2 , (2.2.1)t

i ii i

with coefficients a~1
(t) which are continuously differentiable, where the indices i and

j are st ed from 1 to n. It is assumed that 44 is uniformly elliptic, so that

Z a ij t)
~ i~ j ~ ak I 2 

. t € (2 • (2.2.2)

for all ~ — (C i ) S Rn , and some constan t a > 0.

Every * e H~ has a representati on as a measurable function x Ct) , and any two such

representations of x differ only on a set of measure aero . We writs x 0 if x(t ) ~ 0

a s .  (almost everywhere ) . P — (31 € X : * ~ 0) is clearly convex.
—7=
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To show that P is closed , let {x) be a sequence of points in P which converges

to x € H~. Then x (t ) converges to x(t) in L
2((2), from which it follows that

x (t) -* x(t) a.e. Hence, x(t) ~ 0 a.a. so that x € P.

is a vector lattice: if x,y E H~ then the functions

sup(x,y)(t) = sup( (t), y(t)), , t c (2 ,

(2.2.3)
inf(x,y)(t) — i n f (x ( t ) , y C t ) ) ,  , t € fl

are representations of elements in H~ . (Levy and Stampacchia 11969 , p. 169] prove that

H ((2) is a vector lattice, and their proof can be readily adapted to the present case.)

Another very useful property of H~ is that if x € and F is a measurable subset

of (2 on which x( t )  is constant then (Levy and Stampacchia (1969 , p. 1691),

I 
grad x(t) l

2dt — 0 . ( 2 . 2 . 4 )
F

As defined in (2.2.1), the operator N can only be applied to functions u which are

twice differentiable. Let a:H~ x H~ - R~~be the syssnetric coercive bilinear operator de-

fined by

a( u, v) — ~.~ au1
(t) ~~ -~~~-d t  . ( 2 . 2 . 5)

We extend the domain of definition of N by regarding H as the mapping from X — H~ to

its dual space X — H defined by

- (v ,Mu) = a(u,v), for all u,v € H~ . ( 2 . 2 . 6 )

The standard theory of elliptic operators allows us to assert that N is uniquely defined

1 * —l
by (2.2.6) and that N is a hoineomorphiam of X = H0 onto x = ~ (Lions and Magenes

(1972 , p.2073). In particular, M is an open mapping.

Theorem 2.2.1

N satisfies Conditions S and Z.

Proof: To prove Condition 5, let u,v € P and inf(u,v) = 0. Let u vanish

on Pc 0 and v vanish on G c (2. Then, using (2.2.4), we conclude that

—8—
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a(u,v) — ~f a .1 (t ) ~~~-~~~- d t

= 
~
jaij(t) ~~~-~~~-dt + 

G~F
5j j (t ) ~~~~~~~~ = 0

so that Condition Z is satisfied.

Stampacchia (1965 , p. 2051 proves that Condition S is satisfied.

0

*
We conclude by making some additional remarks about inequalities in X and X

(a) Let x € H~ (fl) . Then x > 0 in the sense of H1(c~) if there exists a sequence

of functions 
~ 

€ C
1(Q) which satisfy 

~m
(t) > 0 in (~ and which converge

to x in H1((2) (Levy and Stampacchia (1969, p. 155]). If x > 0 in the sense

of H1(f2) then it follows inmediately that x ( t )  > 0 a.e. . Conversely, let x € H~ U~)

satisfy x(t) > 0 a.e. . If x denotes the extension of x to R
n obtained by set-

ting fc(t )  = 0 for t (0, we know that ~ £ H~ (Rn) (Adams (1975, p. 5 7 ] ) .  The

averaged functions x~ are smooth and non—negative, and they converge to x in

H1(R~) (Mans (1975 , p. 52)). ~~ 
~h 

= then 
~h ~ x in (2, and we can

conclude that x ~ 0 in the sense of H1((fl . We have thus shown that if

x € H~ ((2) then x > 0 in the sense øf H1(L2) iff x(t) ~ 0 a.e. . This is of in-

portance to us because Stampacchia and his colleagues use > 0 in the sense of

(b) If r € H 1 is non—negative then there exists a non-negative Bore l measure U

such that

(~P,r) — f ~(2

for every ~ € C~ (Q) (Schwartz (1973 , p. 2 9 ) ) .  This is a very elegant charac—

teriaation of non-negative functionals; unfortunately , it is difficult to apply

because its use involves measure theory.

2.3 Example 3

This example is the special case of Example 2 when (2 — (a,b) C R1.

-9-
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All the properties of Example 2 remain valid . There is one additional property which

is very important : Every x € H~ (a ,b) can be represented as a function x(t)  which is

— 
absolutely continuous on (a ,b) and vanishes at t~e endpoints. (Smirnov (1964]).

If x € H~ (a ,b) then * — x~ + X + xr where xi vanishes outside a neighborhood of

a, Xr vanishes outside a neighborhood of b, and x has compact support in (a ,b) . The

averaged functions x~~ Of are smooth , have compact support , and converge to

as h + 0. We can construct similar approximations ~
(h) 

and x~~~ to x~ and x by

first translating and then averaging. If x > 0 a.e. then — ~
(h) 

+ x~~~ + x~~~ con-

verges to x and we see that x > 0 in the sense of N1(a,b) .

-10—
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3. Th. linear program, the dual linear program, and the least .lem.nt probl.m.

With the notation of section 2, the linear program (LP) is;

(LP) - Minimize (x , p) subject to ~~ + q 0 , (3.1)
x€p

The dual program (LCF) which is (formally) dual to LP is:

*( WE)  Maximize (—q,y ) subject to —M y + p ~ 0 , (3.2)
* **y €P

where

** * * *P (y € y : y > 0 )
— 

(3.3)
* * * * * *( u , y ) > 0  for a.ll u € P )

*If * is a solution of LP and y is a solution of L~~ then,

* * *  *(x,p) - (-q,y ) — Cx, - N y + P) + (Mx + q, y ) ~ 0 , (3.4)

so that the value of LP is always greater than or equal to the value of WP. In particular.

if (x ,p) + (q,y ) = 0 for s~~~ feasible z and y then x and y are optimal . It may,

• however, occur that th . two values are never equal , in which case there is a duality gap.

Since X is reflexive we know (Dunford and Schwartz (1966, p. 661 ) that there is an

• isometric isomorphism r which maps N onto N - y and which is defined by

* *( * 31  ) = (a ,~x) . (3.5)

Let

~/ — r y  • (3.6)

where y € N (not Y)  • so that

*
(=q,y ) — (—y, q) . (3.7)

* * *We assert that y ~ 0 if f y € P. First assume that 
~
‘ : P. Then, for any u £ P

(y, u~ ~ 0 , so that y ~~ 0 • Co the other hand , suppose that y , 0 but that y % P. Then,

since the singleton fyi  is compact and the cone P — {x € x * ~ 0) is closed and convex,

these two sets can be separated (Dunford and Schwartz (1966, p. 4173). That is, there

exists a linear functional f £ F and constwts > 0 and c such that

— 11—
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(x ,f)~~~ c if x E P

(y , f)~~~ c — €  .

*
Using the properties of P we conclude that c — 0, so that f € P and (y , f) < -C . But

*( y , f) — < f,y >~ 
0, and we have a contradiction.

Finally, for any u £ N

* *  * *Cu, N y ) — (*~ , y ) , (definition of M

— (Mu , KY ) , (equation (3.6)) ,

(3. 8)
— ( y ,  M u )  , (definition of K)

( u , iiy)

*
where we define the linear operator N : N • N = F by

a(u ,v)  — (v, Mu) — Cu, Mv) . (3.9)

* *  * *Thus, N y  + p € P iff M y + p € P .

* *Susming up, we see that y satisfies LOP iff y = icy where y solves:

(LD) Maximize (—y ,q)  subject to —My + p ~ 0
yr X y~~~ 0

and we will take this to be th. dual of LP in our further work.

Since N is partially ordered, we may also consider the least element problem (LE) :

Find x c P such that Mx + q > 0 and x < u for every u € P satisfying Mu + q ~ 0.

LE has at most one solution , for if *1 and x2 
ware two solutions we would have *1 ~

and *2 < * 1 which implies that =

In the special case N — Rn , there exists a very satisfactory theory for LP and LD,

and I4angaaarian 11976] used this as the starting point for his study of the relationship be-

tween LP and LCP (the linear cc~~~le.enta rity problem ) . LE has also been studied in the

finite dimensional case (Cottle and Veinott (1972]).

The case when N is infinite di nsional is wach more diff icult .  It is usually assumed ,

for ex~~~le by Ekeland and Temam (1974 • p. 66) , that the Arrow-Hurwics constraint qualifica-

tion is satisfied , namely that there exists u r P such that Mu + q is an interior point

F —12—
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of P~ . An example of Craven 11977 , p. 331) illustrates the difficulties which can arise
*

when P does not have any interior points and when N is not an open map. Dumpster (19753

develops a general framework for the analysis of LP and LD.

In the present paper we prove the existence of solut ions to LP and LE by using the

theory of variational inequalities. We do not prove the existence of a solution to LD,

although in section 6 we give an example in which LB does have a solution.

I
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4. The linear ccmpl~~~ntarity problem, the variat ional inequality, and the unilateral

minimization problem.

The linear c~~~ leaentarity problem (LC) is as follows: Find x c P such that

(LC) Mx + q ~ 0, (x,Mx + q) — 0 . (4.1)

The variational inequality (VI) is: Find x c P such that

(VI) a(x, v — x) + (V - x, q) ~ 0 , (4.2)

for all v c P .

If a is sysmetric then the unilateral minimization problem (or quadratic progra ing

problem) (UN) is: Find x c P such that

(UN) .7(x) ~ .7(u), for all u € P (4.3)

where

.7(u) — a(u,u) + 2(q.u) . (4.4)

The basic result on variational inequalities is due to St~~~ acchia (1964] : if a is

coercive then there exists a unique solut ion to VI.

The connection between VI and UN was also observed by St~~~acchia (1964] : if a is

sy etric and coercive , then VI is equivalent to UN.

The relationship between VI and LC was noted independently by a number of workers in-

cluding Lions and Stampacahia 11969 , p. 1721 , ICaramardian 119711 , Mure (1971). The basic

result, which we prove for the convenience of the reader is:

Theorem 4.1

LC is equivalent to VI.

Proof : Ms~~e first that * solves LC. Then for any V c P

a(x , v - x) + (V - x, q) - (V - x, Mx + q)
-~~ — (v, M x + q )~~~0 ,

so that x solves VI.

Mow assume that x solves VI. Then setting first v — 0 and then v — 2* we see

that (—x , Mx + q) ~ 0 and (*, Mx + q> ~ 0, from which we conclude that (x, Mx + q) — 0.

—14—

2.-- ~~~~~~~~~~~~~~~~~~ 
- — -

______________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



But then , •(*,v=z) + (v _ x, q).(y,Mx+q)~~~ for all v 1 0, so that
and hence x solves IC.
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5. The relationship between the linear program, the least element problem, and the linear

compleinentarity problem.

Theorem 5.3 .

If a is coercive and satisfies Condition Z, then LE has a solution , namely the unique

solution of VI.

Proof: The proof is a modification of proof of Stainpacchia (1969, p. 151] who implicitly

used Condition Z in the special form : if u .v E P and inf(u , v) — 0 then a(u, v) — 0.

Let u be the unique solution of VI so that u e P and

a(u ,  v - u) + (v - u, a) ~ 0

for all y e ? .

In particular , choosing V — u + w for any w € P we conclude that Mu + q ~ 0.

Now let w be any element such that w € P and Mw + q ~ 0. We assert that w u .

To see this, let ~ — .tn(u,w) € N, so that w — > 0 and u - C ~ 0. Furthermore ,

inf(w — C, u — ~
) — in f(w,u ) — C — 0.j Then

a(u — C,  u — C) (a (C, ~ — u) + (C — u, q > J  — (a(u, C — u) + (C — u, q)1

< (a(~ , C — u) + (C — u,  q)]

because u satisfies VI . But

a(C ,  C — u) + (C — u, q) — a(w — C, U — C) + (a(w , C — U) + (C — u, q))

< 0

— 
because the first term on the right is monpositive by Condition ~ and the second term is

norçositive since Mv + q ~ 0 and C - u 0.

Combining the above inequalities we see that a(u - C~ u - ~
) < 0. Remembering that

a is coercive we conclude that u — ~~. Thus, w C — u so that u is a solution of LB.

0

Theorem 5.2

(i) If x solves LB then x solves LP.

(ii) If a satisfies Condition S and p is strictly positive , then LP has at most

one solution .
—16—
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(iii) If a satisfies Condition S. p is strictly positive, and x solves I) then

x solves LB.

F 
Proof: (i) is obvious . To prove (ii) , let x~ and *2 be two solutions of VP. By Condi-
tion 5, ~ • inf(x l~

x2) € P satisfies 1~C + q ~ 0 and (C ’p) ~ (X 1,p). Since x is optimal,

= (x1.p) and we conclude that C — x~ . Similarly, C = *2 so that Xl -

To prove (iii) , let u e P satisfy Mu - g > 0. Set ~ — in ffu ,x) . Then K~ + q~~~ 0
and (C ap)  - (x,p) so that C x. Hence , -u > x and x solves LB.

0
Remembering that if a is coercive and a satisfies Conditi on Z then a satisfies

Condition S (Theorem 2.1) we find that

Theorem 5.3

If a is coercive and satisfies Condition Z, and if p is strictly positive, then LP,
LB VI , and LC all have the same unique solution.

0
Theorem 5.4

Assume that x solves VI, that y Solves ID, that (x,p) + (y,q) — 0, that a is

symeetric and coercive and satisfies Condition Z, and that p + g > 0.

Then y- > x .

Proof: Set w — inftx ,y) . Then

a(x — v, x — w) — atx — y , x — w) + aty — w-, x —

~~a(x-y, x - w )

since y - - w > 0 , x — w > 0 , and i n f ( y - w , x — v ) . 0. But,

a(x - y, x — w) — a(x, x — w) - a (y, x - w)
— a(x , x — w) — a(x - w, y)
— a(x , * - w) + Cx — w, — My)

= (a( x,  x - w) + Cx - w , q ))  - Cx - w , p + q) +

+ (x - w , -~~y + p )

—17—
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The first term on the right is negativ, because x solves VI • The second term is negative

*because p + q C P and * — w c P. The third term is zero because the equality

0 — (x,p) + (y ,q )  — Cx , - My + p) + (y. Mx + q)

implies that (x, - *y + p) — 0 and hence , since 0 < w < x, that (w, - My + p) — 0.

Combining the above, we conclude that a(x - w, x — w) ~ 0 80 that x — w. Then

y ~~ w - inf(x,y) - x.
0

It may be observed that if x solves VP , y solves LB. (x,p) + (y,q) — 0, and

y ~ x, then we have that

0 < C x , M x + q ) < (y, M x + q ) 0

that is. x solves IC.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—.~- - - .-~_~~- —-— ‘~~~~‘—— _——- - —
~~~~

—-———- . - - 

~~~~~~~~ ~~~~
—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— -~~ --—-—----~~~~~ ~~~~~~~~~
————



6. A one-dimens~onal problem -

We consider a special case of ~~aaple 3 (section 2.3): N —

- 2
JSin(x,p) = f lx ( t ) d t  subject to x(t) ~ 0 a.e.,0 (6.1)

and Mx +q7—x (t ) + (t - l)~~~D

with the corresponding dual problem

2
Mxx(y, -q) — - f (t — l)y(t)dt subject to y(t) > 0 a... ,

0 (6.2)
— N y + p s~~ (t)+l>0

The in.quality -x + (t - 1) ~ 0 is interpreted in the sense that

2
Mx + q) — f(x(t ) i (t ) + (t — l)~~(t)J dt 0 , (6.3)

0

for all non—negative ~ c H~~(0 ,2) ,  and the inequality , + 1 > 0 is interpreted in the

same way.

This problem was chosen becaus• it is a simple problem with the same genera l structure

as the problem for a cavitating journal bearing which is discussed in the next section.

There is a straightforward procedure for obtaining possible solutions of such one-dimen-

sional problemsI these solutions can then be verified a-postiori. We assume that x(t )  > 0 for

o < t -r and x(t) — 0 for t c t -c 2,  where t is an unknown constant corresponding

to the fre. boundary (the point t— t ) . If x also satisfies Lc thsn (N, — 1 +  ( t -  l) ) —0,

L 

so that —iHt) + Ct — 1) = 0 for 0 < t c -
~~. The genera l solution of the equation

—~~~+ (t — l) — 0  is

x( t) — A + Bt + (t — l)~ . (6.4)

- 1*1mg th . conditions x(O) - x(t )  - 0 to deter mine th . constants A and B vs find

xCt )  — t(t — t) (—3 + t + tJ /6 . (6.5)

-19-
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To determine t we note that the condition -x + (t - 1) > 0 implies that for all

snooth non-negative ~ e

2
(~ , M x + q ) =J [x~~+(t - 1)~ 1dt

0

-r 2
— f  (r~~+ (t — l)~ ] d t + f ( t — l)~~dt
0 -r

-
~ t 2

— x~~J~ + 5 
(—xv + (t - l)~ ] dt + 5 Ct — l)v dt , (6.6)

J 0 -r

2
= c ( r — ) ~~(T) + 5 

(t — l)~ dt
-r

This is only possibl. if t ~ 1 (so that t - 1 ~ 0 for t e (r,2]) and x ( T — )  ~ 0. But,

*(t) ~ 0 for t. ~ t and x ( T )  — 0  so ~~(t—) ~ 0. We conclude that ,~( r-) = ~~(t+) — ~~(t)

— 0. The condition ~~(T) — 0 leads to an algebraic equation for r, namely ,

~~(T) = T ( — 3 + 21)/6 — 0

thus. -r — 3/2 and

x(t) — t(.t — 3/2)2,6 , 0 -c t 3/2

(6,7)
, 3/2~~~t < 2  ,

is our trial solution .

Using (6.6) aM (6.7) we see that x is such that x > 0, —i + (t — 1) > 0, and

s Mx + q) — 0, so that x is a solution of IC. Invoking Theorems 4.1 and 5.3,  we con—

d ude that z is th. unique solution of VP .

We now consider the determination of y. Since Cx, y + 1) — 0, it follows that

- y(t) + 1 — 0 when x(t) > 0, that is, when 0 < t < T . On the other hand , since

(y, -~~ + (t - 1) )  — 0, it follows that y (t) — 0 when —i + (t - 1) > 0 . that is, when

t C 2. We conclude that ~ (t) + 1 — 0 for 0 < t < 3/2 and y(t) — 0 for 3/2 < t < 2.

Solving this boundary value problem we obtain

—20—
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y( t )  — t (—2 t + 3)/4. 0 < t < 3/2
• (6.8)

— O  , 3 /2< t ~~~2

The condition y > 0 is seen to be satisfied.

Direct ccmpj~tation yields

Cx,p) — J x(t)dt — ifr— - f (t - l)y( t )dt  — -(y,q) - (6.9)

The solutions x( t )  and y(t )  are plotted in Figure 6.1. We note that y ~ x as

proved in Theorem 5.4.

Fiqure 6.1: s(t) and iA~.L

It is possib l. to give two justifications for the free boundary condition 1(t) — 0.

Firstly, if x c H~(O,1), as 10 often th. case, then ~t(t) is continuous so that

— *(t+) — 0. Secondly, a reasonable interpretation of the condition

-i(t) + Ct - 1) > 0 is that

—21—
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— 
c(t + At) - ~ (r — At) + ft - 1) > 0 .At —

Since + At) — -O and ~~(t 
- 0) ~ 0, it follows that - 0) — 0.

I

p
I
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7. Lubrication cavitation of journal bearings

A large rn~~~er of physical problems can be formulated as linear couplementarity problems

in which a differentLal equation (ordinary or partial) must be solved subject tc~- the inequal-

ity constraint that the solution be non-negative ; roughly speaking, at any point the solution

must either be zero or satisfy the differential equation (Cryer (1977 , in preparation],

Onvaut and Lions (1972)). The reformulation of such linear complementarity problems as linear

programs has two advantages: Ci )  it suggests alternative methods of solving the problems ;

and (ii) it sometimes provides a physically meaningful interpretation. As an example of such

linear complementarity problems we consider here the problem of a cavitating journal bearing .

A journal bearing consists of a circular cylinder (the journal ) which is rotating inside

a support structure (the bearing). The narrow gap between the journal and the bearing is

filled with a thin film of lubricating fluid . Various geometries are possible. In Figure

7.1 we show a partial journal bearing of finite length. The term ‘partial’ refers to the -5

fact that the journal i~ not c~~çletely enclosed within the bearing, and is partially ax-

posed to the atmosphere.
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Figure 7.1: A part ial j ournal bearing —
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It is required to determine the pressure x of the lubricant , and the load II borne

by th. bearing. Because the gap between th. journal and the bearing is very narrow , the

simplifications of lubrication theory can be applied. In particular, it is assumed that the

pressure does not vary across the gap, so that the problem becomes a two-dimensional problem

in the rectangular domain 0 — ABCV~F in the Or -plane (Figure 7.2) .

e

0 C
x —  0

vapor C)

x > 0  ~_-

B______

• ~+

V

F A

Figure 7.2: The domain C)

The lubricant flows in from a reservoir along the entry edge A? and flows out

- 
-5 

through the ends ABC and DEF as well as through the exit edge CD. At all these points

the lubricant is in contact with the atmosphere , and if the pressure is normalized so that

atmospheric pressure is zero, then the boundary conditions are that x — 0 on IC). That is,

— —2 5—
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X C X — H1(C)) . (7.1)

The lubricant occurs in both liqu id and gaseous phases. It is assumed tha -t the lubri -

cant vaporizes when the pre ssure is zero , so that the inequality x > 0 must be satisfied

everywhere. If the pressure is greater than zero then the lubricant is in the liquid phase

and satisfies the simplified form of the t4avier-Stokes equations known as Reynolds ’ equation.

After introducing dimensionless variables , the equation takes the form (Pinkus and Sternlicht

(19613):

Mx + q - -

~~~~ 
(h3 -

~~~~ 
) + a

2 
~~ Ch

3 
~~~) + - 0 , (7.2)

where a is a positive constant, and where h — h(O) is a given function which is propor-

tional to the width of the gap.

On the free boundary F, the interface between the liquid and gaseous phases, the

boundary conditions are

x = 0, 2x/~n 0, on r , (7•3)

where )/~n denotes the normal derivative.

In the engineering literature (Pinkus and Sternlicht El961]) the problem is formulated

mathematically as a classical free boundary problem: Find x and F such that x satis-

fies (7.2) subject to the boundary conditions (7.1) • and (7.3) . However , in a large n*~~~er

of papers in the engineering literature, beginning with the work of Christopherson (19411 ,

rn erical approximations have been obtained in a completely different way: equation (7.2)

is repl aced by finite differences, and the resulting system of algebraic equat ions is solved

as a finite—dimensional linear coaplementarity problem (Cryer (1971] ) which may be considered

as a discretization of the infinite-dimensional linear compl~~~ntarity problem

x~~~ 0 , M x + q~~~ 0, (X, M x + q > 0 . (7.4)

We may thee take (7.4) as the starting point for a mathematical analysis of the problem.

Tb. problem is a special case of Example 2 (section 2.2) , and it follows from Theorem 5 • 3
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that there exists a unique solution x C H~ (0) of LP, 12, VI, and IC.

In the engineering literature , there has been ~~se discussion of an appropr iate varia-
tional principle for the problem (Chri stopherson (1957]). The formulation as a variational
inequality leads to two useful variati onal pr inciples:

(1) Since a is sy e t ric, the problem is equivalent to the unilateral minimization

problem

Inf 3(v) — a(v,v) + 2(V,q)
v’O

(2) For any strictly positive function p( O ,z) , the problem is equivalent to the

linear progra ing problem

Bin (x ,p )  f x ( O, z )p( O ,z) de Ar
‘3

subjsct to x > 0 , M x + q > 0. In particular, if _ w /2<O
,< O

D~~~
w/2 (s.. Pigures

7.1 and 7.2) • then p — cos 0 > 0 and ~x ,p) is the load N borne by the bearing in

the vertical direction (Figure 7.1). That is • the solution x minimizes the v rtical

load .
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